Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nanomicro Lett ; 16(1): 175, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639824

RESUMO

Metal-organic frameworks (MOFs) have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity, but the limited catalytic activity and stability has hampered their practical use in water splitting. Herein, we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs (donated as AE-CoNDA) to serve as efficient catalyst for water splitting. AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm-2 and a small Tafel slope of 62 mV dec-1 with excellent stability over 100 h. After integrated AE-CoNDA onto BiVO4, photocurrent density of 4.3 mA cm-2 is achieved at 1.23 V. Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p, which accounts for the fast kinetics and high activity. Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.

2.
Small ; : e2400221, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586921

RESUMO

Aqueous zinc-ion batteries (ZIBs) stand out as a promising next-generation electrochemical energy storage technology, offering notable advantages such as high specific capacity, enhanced safety, and cost-effectiveness. However, the application of aqueous electrolytes introduces challenges: Zn dendrite formation and parasitic reactions at the anode, as well as dissolution, electrostatic interaction, and by-product formation at the cathode. In addressing these electrode-centric problems, additive engineering has emerged as an effective strategy. This review delves into the latest advancements in electrolyte additives for ZIBs, emphasizing their role in resolving the existing issues. Key focus areas include improving morphology and reducing side reactions during battery cycling using synergistic effects of modulating anode interface regulation, zinc facet control, and restructuring of hydrogen bonds and solvation sheaths. Special attention is given to the efficacy of amino acids and zwitterions due to their multifunction to improve the cycling performance of batteries concerning cycle stability and lifespan. Additionally, the recent additive advancements are studied for low-temperature and extreme weather applications meticulously. This review concludes with a holistic look at the future of additive engineering, underscoring its critical role in advancing ZIB performance amidst the complexities and challenges of electrolyte additives.

3.
Small ; : e2311477, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554022

RESUMO

Seawater electrolysis is a promising but challenging strategy to generate carbon-neutral hydrogen. A grand challenge for hydrogen evolution reaction (HER) from alkaline seawater electrolysis is the development of efficient and stable electrocatalysts to overcome the limitation of sluggish kinetics. Here, a 3D nanorod hybrid catalyst is reported, which comprises heterostructure MoO2@NiMoO4 supported Ru nanoparticles (Ru/ MoO2@NiMoO4) with a size of ≈5 nm. Benefitting from the effect of strongly coupled interaction, Ru/MoO2@NiMoO4 catalyst exhibits a remarkable alkaline seawater hydrogen evolution performance, featured by a low overpotential of 184 mV at a current density of 1.0 A cm-2, superior to commercial Pt/C (338 mV). Experimental observations demonstrate that the heterostructure MoO2@NiMoO4 as an electron-accepting support makes the electron transfer from the Ru nanoparticles to MoO2, and thereby implements the electron redistribution of Ru site. Mechanistic analysis elucidates that the electron redistribution of active Ru site enhances the ability of hydrogen desorption, thereby promoting alkaline seawater HER kinetics and finally leading to a satisfactory catalysis performance at ampere-level current density of alkaline seawater electrolysis.

4.
J Environ Manage ; 355: 120547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452621

RESUMO

The synergistic partial-denitrification, anammox, and fermentation (SPDAF) process presents a promising solution to treat domestic and nitrate wastewaters. However, its capability to handle fluctuating C/N ratios (the ratios of COD to total inorganic nitrogen) in practical applications remains uncertain. In this study, the SPDAF process was operated for 236 days with C/N ratios of 0.7-3.5, and a high and stable efficiency of nitrogen removal (84.9 ± 7.8%) was achieved. The denitrification and anammox contributions were 6.1 ± 7.1% and 93.9 ± 7.1%, respectively. Batch tests highlighted the pivotal role of in situ fermentation at low biodegradable chemical oxygen demand (BCOD)/NO3- ratios. As the BCOD/NO3- ratios increased from 0 to 6, the NH4+ and NO3- removal rates increased, while the anammox contribution decreased from 100% to 80.1% but remained the primary pathway of nitrogen removal. The cooperation and balanced growth of denitrifying bacteria, anammox bacteria, and fermentation bacteria contributed to the system's robustness under fluctuating C/N ratios.


Assuntos
Nitratos , Águas Residuárias , Fermentação , Desnitrificação , Esgotos , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Nitrogênio/análise
5.
J Colloid Interface Sci ; 664: 251-262, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467090

RESUMO

Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.

6.
Heliyon ; 10(5): e27077, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449616

RESUMO

Background: Thyroid Dysfunction (TD) is a common immune-related adverse events (irAEs) in the treatment of advanced lung cancer with programmed cell death protein 1 (PD-1) and programmed death 1 ligand (PD-L1) inhibitors, with incidence accounting for 6-8% of all irAEs. The incidence of TD is receiving increasing attention from clinicians, given its potential impact on clinical efficacy. However, the molecular mechanisms, biomarkers, and clinical impact of TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer are unclear. Objective: To present a comprehensive review of current advancements in research about the molecular mechanisms, influential factors, and clinical manifestations in the treatment of advanced lung cancer with PD-1 and PD-L1 inhibitors, as well as the correlation between TD and the efficacy of PD-1 and PD-L1 inhibitors. Methods: A systematic search was conducted using PubMed, Web of Science, Cochrane Library, Embase and Google Scholar databases, with the keywords including thyroid dysfunction, efficacy, mechanisms, immune checkpoint inhibitors, PD-1/PD-L1 inhibitors, and advanced lung cancer. Results: PD-1/PD-L1 inhibitors can induce T cell-mediated destructive thyroiditis, thyroid autoantibody-mediated autoimmunity, and a decrease in the number of immunosuppressive monocytes (circulating cluster of differentiation (CD)14+ human leukocyte antigen (HLA)-DRlow/negatives monocytes, CD14+ HLA-DR + lo/neg), leading to TD. Several factors, including peripheral blood inflammatory markers, body mass index (BMI), baseline thyroid-stimulating hormone (TSH) level, gender, smoking history, hypertension, and previous opioid use, may also contribute to the development of TD. However, there is currently a lack of reliable predictive biomarkers for TD, although anti-thyroid antibodies, TSH levels, and peripheral blood inflammatory markers are expected to be predictive.Interestingly, some studies suggested a positive correlation between TD and clinical efficacy, i.e., patients experiencing TD showed better outcomes in objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS), compared with those without TD. However, most of these studies were single-center and had small sample sizes, so more multi-center studies are needed to provide further data support. Conclusion: TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer may be associated with good clinical outcomes. The clarification of the molecular mechanisms underlying TD and the identification of reliable predictive biomarkers will guide clinicians in managing TD in this patient population.

7.
BMC Sports Sci Med Rehabil ; 16(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167148

RESUMO

OBJECTIVE: The aim of this study was to assess the accuracy and test-retest reliability of a wearable inertial measurement unit (IMU) system for gait analysis in healthy female compared to a gold-standard optoelectronic motion capture (OMC) system. METHODS: In our study, we collected data from 5 healthy young females. Participants were attached with markers from both the OMC system and the IMU system simultaneously. Data was collected when participants walked on a 7 m walking path. Each participant performed 50 repetitions of walking on the path. To ensure the collection of complete gait cycle data, a gait cycle was considered valid only if the participant passed through the center of the walking path at the same time that the OMC system detected a valid marker signal. As a result, 5 gait cycles that met the standards of the OMC system were included in the final analysis. The stride length, cadence, velocity, stance phase and swing phase of the spatio-temporal parameters were included in the analysis. A generalized linear mixture model was used to assess the repeatability of the two systems. The Wilcoxon rank-sum test for continuous variables was used to compare the mean differences between the two systems. For evaluating the reliability of the IMU system, we calculated the Intra-class Correlation Coefficient (ICC). Additionally, Bland-Altman plots were used to compare the levels of agreement between the two systems. RESULTS: The measurements of Spatio-temporal parameters, including the stance phase (P = 0.78, 0.13, L-R), swing phase (P = 0.78, 0.13, L-R), velocity (P = 0.14, 0.13, L-R), cadence (P = 0.53, 0.22, L-R), stride length (P = 0.05, 0.19, L-R), by the IMU system and OMC system were similar. Which suggested that IMU and OMC systems could be used interchangeably for gait measurements. The intra-rater reliability showed an excellent correlation for the stance phase, swing phase, velocity and cadence (Intraclass Correlation Coefficient, ICC > 0.9) for both systems. However, the correlation of stride length was poor (ICC = 0.36, P = 0.34, L) to medium (ICC = 0.56, P = 0.22, R). Additionally, the measurements of IMU systems were repeatable. CONCLUSIONS: The results of IMU system and OMC system shown good repeatability. Wearable IMU system could analyze gait data accurately. In particular, the measurement of stance phase, swing phase, velocity and cadence showed excellent reliability. IMU system provided an alternative measurement to OMC for gait analysis. However, the measurement of stride length by IMU needs further consideration.

8.
J Am Chem Soc ; 146(2): 1423-1434, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38171910

RESUMO

Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites' atomic-scale structures and engineering the carbon support's mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu-N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C-C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm-2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.

9.
Angew Chem Int Ed Engl ; 63(12): e202317884, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38150410

RESUMO

The electrochemical CO2 reduction reaction (CO2 RR) is a promising approach to achieving sustainable electrical-to-chemical energy conversion and storage while decarbonizing the emission-heavy industry. The carbon-supported, nitrogen-coordinated, and atomically dispersed metal sites are effective catalysts for CO generation due to their high activity, selectivity, and earth abundance. Here, we discuss progress, challenges, and opportunities for designing and engineering atomic metal catalysts from single to dual metal sites. Engineering single metal sites using a nitrogen-doped carbon model was highlighted to exclusively study the effect of carbon particle sizes, metal contents, and M-N bond structures in the form of MN4 moieties on catalytic activity and selectivity. The structure-property correlation was analyzed by combining experimental results with theoretical calculations to uncover the CO2 to CO conversion mechanisms. Furthermore, dual-metal site catalysts, inheriting the merits of single-metal sites, have emerged as a new frontier due to their potentially enhanced catalytic properties. Designing optimal dual metal site catalysts could offer additional sites to alter the surface adsorption to CO2 and various intermediates, thus breaking the scaling relationship limitation and activity-stability trade-off. The CO2 RR electrolysis in flow reactors was discussed to provide insights into the electrolyzer design with improved CO2 utilization, reaction kinetics, and mass transport.

10.
Sci Rep ; 13(1): 17996, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865672

RESUMO

Radar-based human activity recognition (HAR) offers a non-contact technique with privacy protection and lighting robustness for many advanced applications. Complex deep neural networks demonstrate significant performance advantages when classifying the radar micro-Doppler signals that have unique correspondences with human behavior. However, in embedded applications, the demand for lightweight and low latency poses challenges to the radar-based HAR network construction. In this paper, an efficient network based on a lightweight hybrid Vision Transformer (LH-ViT) is proposed to address the HAR accuracy and network lightweight simultaneously. This network combines the efficient convolution operations with the strength of the self-attention mechanism in ViT. Feature Pyramid architecture is applied for the multi-scale feature extraction for the micro-Doppler map. Feature enhancement is executed by the stacked Radar-ViT subsequently, in which the fold and unfold operations are added to lower the computational load of the attention mechanism. The convolution operator in the LH-ViT is replaced by the RES-SE block, an efficient structure that combines the residual learning framework with the Squeeze-and-Excitation network. Experiments based on two human activity datasets indicate our method's advantages in terms of expressiveness and computing efficiency over traditional methods.


Assuntos
Lesões Acidentais , Radar , Humanos , Fontes de Energia Elétrica , Atividades Humanas , Aprendizagem
11.
Front Pediatr ; 11: 1197439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492612

RESUMO

Objective: To explore the application value of 3D scanning to obtain the parameters of transverse axis of medial longitudinal arch of foot in the biomechanical evaluation of transverse axis of medial longitudinal arch of foot in children. Method: The feet of children with flat foot, normal foot and high arched foot were scanned with the Foot Secret 3D scanner in the sitting and standing positions. The scanning data were imported into CATIA v5 software for measurement, to obtain four parameters of transverse axis of medial longitudinal arch from transverse arch angle, external transverse arch angle, curvature and transverse arch cross-sectional area. Result: There were statistically significant difference in transverse arch angle, external transverse arch angle and cross-sectional area between sitting and standing positions (p < 0.05). There were statistically significant differences in transverse arch angle, external transverse arch angle, curvature and transverse arch cross-sectional area among children with flat foot, normal foot and high arch foot (p < 0.05). Conclusion: The four parameters of transverse arch angle, external transverse arch angle, maximum curvature and cross-sectional area obtained by three-dimensional scanning can detect the changes of transverse axis of children's foot arch in different body positions with different foot types, which can be effectively used for the biomechanical evaluation of transverse axis of children's foot arch.

12.
Adv Mater ; 35(42): e2303632, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37435992

RESUMO

With the development of various gel-based flexible sensors, novel gels with multiple integrated and efficient properties, particularly recyclability, have been developed. Herein, a starch-based ADM (amylopectin (AP)-poly(3-[dimethyl-[2-(2-methylprop-2- enoyloxy)ethyl]azaniumyl]propane-1-sulfonate) (PDMAPS)-MXene) gel is prepared by a facile "cooking" strategy accompanying the gelatinization of AP and polymerization reaction of zwitterionic monomers. Reversible crosslinking in the gel occurs through hydrogen bonding and electrostatic interactions. The ADM gel exhibits high stretchability (≈2700%, after one month), swift self-healing performance, self-adhesive properties, favorable freezing resistance, and satisfactory moisturizing properties (≥30 days). Interestingly, the ADM gel can be recycled and reused by a "kneading" method and "dissolution-dialysis" process, respectively. Furthermore, the ADM gel can be assembled as a strain sensor with a broad working strain range (≈800%) and quick response time (response time 211 ms and recovery time 253 ms, under 10% strain) to detect various macro- and micro-human-motions, even under harsh conditions such as pronunciation and handwriting. The ADM gel can also be used as a humidity sensor to investigate humidity and human respiratory status, suggesting its practical application in personal health management. This study provides a novel strategy for the preparation of high-performance recycled gels and flexible sensors.

13.
Angew Chem Int Ed Engl ; 62(34): e202304797, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37376764

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing pathway to convert N2 into NH3 . However, significant kinetic barriers of the NRR at low temperatures in desirable aqueous electrolytes remain a grand challenge due to the inert N≡N bond of the N2 molecule. Herein, we propose a unique strategy for in situ oxygen vacancy construction to address the significant trade-off between N2 adsorption and NH3 desorption by building a hollow shell structured Fe3 C/Fe3 O4 heterojunction coated with carbon frameworks (Fe3 C/Fe3 O4 @C). In the heterostructure, the Fe3 C triggers the oxygen vacancies of the Fe3 O4 component, which are likely active sites for the NRR. The design could optimize the adsorption strength of the N2 and Nx Hy intermediates, thus boosting the catalytic activity for the NRR. This work highlights the significance of the interaction between defect and interface engineering for regulating electrocatalytic properties of heterostructured catalysts for the challenging NRR. It could motivate an in-depth exploration to advance N2 reduction to ammonia.

14.
Adv Mater ; 35(41): e2304022, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358536

RESUMO

Electrochemical oxygen evolution reaction (OER) kinetics are heavily correlated with hybridization of the transition metal d-orbital and oxygen intermediate p-orbital, which dictates the barriers of intermediate adsorption/desorption on the active sites of catalysts. Herein, a strategy is developed involving strain engineering and coordination regulation to enhance the hybridization of Ni 3d and O 2p orbitals, and the as-synthesized Ni-2,6-naphthalenedicarboxylic acid metal-organic framework (DD-Ni-NDA) nanosheets deliver a low OER overpotential of 260 mV to reach 10 mA cm-2 . By integrating an alkaline anion exchange membrane electrolyzer and Pt/C electrode, 200 and 500 mA cm-2 current densities are reached with cell voltages of 1.6 and 2.1 V, respectively. When loaded on a BiVO4 photoanode, the nanosheet enables highly active solar-driven water oxygen. Structural characterizations together with theoretical calculations reveal that the spin state of the centre Ni atoms is regulated by the tensile strain and unsaturated coordination defects in DD-Ni-NDA, and such spin regulation facilitates spin-dependent charge transfer of the OER. Molecular orbital hybridization analysis reveals the mechanism of OH* and OOH* adsorption energy regulation by changes in the DD-Ni-NDA spin state, which provides a deeper understanding of the electronic structure design of catalysts for the OER.

15.
Angew Chem Int Ed Engl ; 62(43): e202307283, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37338736

RESUMO

Upgrading CO2 into multi-carbon (C2+) compounds through the CO2 reduction reaction (CO2 RR) offers a practical approach to mitigate atmospheric CO2 while simultaneously producing high value chemicals. The reaction pathways for C2+ production involve multi-step proton-coupled electron transfer (PCET) and C-C coupling processes. By increasing the surface coverage of adsorbed protons (*Had ) and *CO intermediates, the reaction kinetics of PCET and C-C coupling can be accelerated, thereby promoting C2+ production. However, *Had and *CO are competitively adsorbed intermediates on monocomponent catalysts, making it difficult to break the linear scaling relationship between the adsorption energies of the *Had /*CO intermediate. Recently, tandem catalysts consisting of multicomponents have been developed to improve the surface coverage of *Had or *CO by enhancing water dissociation or CO2 -to-CO production on auxiliary sites. In this context, we provide a comprehensive overview of the design principles of tandem catalysts based on reaction pathways for C2+ products. Moreover, the development of cascade CO2 RR catalytic systems that integrate CO2 RR with downstream catalysis has expanded the range of potential CO2 upgrading products. Therefore, we also discuss recent advancements in cascade CO2 RR catalytic systems, highlighting the challenges and perspectives in these systems.

16.
Ther Drug Monit ; 45(6): 786-791, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37296502

RESUMO

BACKGROUND: This study aimed to investigate the pharmacokinetic/pharmacodynamic (PK/PD) target attainment of various tigecycline dosing regimens in real-world patients with impaired liver function. METHODS: The clinical data and serum concentrations of tigecycline were extracted from the patients' electronic medical records. Patients were classified into Child-Pugh A, Child-Pugh B, and Child-Pugh C groups, according to the severity of liver impairment. Furthermore, the minimum inhibition concentration (MIC) distribution and PK/PD targets of tigecycline from the literature were used to obtain a proportion of PK/PD targets attainment of various tigecycline dosing regimens at different infected sites. RESULTS: The pharmacokinetic parameters revealed significantly higher values in moderate and severe liver failure (groups Child-Pugh B and Child-Pugh C) than those in mild impairment (Child-Pugh A). Considering the target area under the time-concentration curve (AUC 0-24 )/MIC ≥4.5 for patients with pulmonary infection, most patients with high-dose (100 mg, every 12 hours) or standard-dose (50 mg, every 12 hours) for tigecycline achieved the target in groups Child-Pugh A, B, and C. Considering the target AUC 0-24 /MIC ≥6.96 for patients with intra-abdominal infection, when MIC ≤1 mg/L, more than 80% of the patients achieved the target. For an MIC of 2-4 mg/L, only patients with high-dose tigecycline in groups Child-Pugh B and C attained the treatment target. Patients experienced a reduction in fibrinogen values after treatment with tigecycline. In group Child-Pugh C, all 6 patients developed hypofibrinogenemia. CONCLUSIONS: Severe hepatic impairment may attain higher PK/PD targets, but carries a high risk of adverse reactions.


Assuntos
Falência Hepática , Humanos , Tigeciclina , Área Sob a Curva , Antibacterianos/farmacocinética , Testes de Sensibilidade Microbiana
17.
Carbohydr Polym ; 307: 120600, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781283

RESUMO

Starch with active hydroxyl groups is one of the most attractive carbohydrates for the preparation of gels in recent years. However, the mechanical properties, self-healing properties, self-adhesion properties, especially low-temperature resistance are generally unsatisfactory for current starch-based gels. Based on that, a multiple network structure of amylopectin-carboxymethyl cellulose-polyacrylamide (ACP) gel was prepared by a "cooking" method. Tannic acid (TA) was used to construct multiple hydrogen bonds among molecular chains. ACP gel demonstrates high elongation at break (1090 %) and strength, self-healing performance and adhesion behavior, extraordinary low-temperature resistance (-80 °C) and self-extinguishing. As a sensor device, ACP gel can effectively monitor human movements and microscopic expression changes and achieve real-time monitoring under harsh conditions (After multiple cutting-healing steps, under low-temperature conditions, even a month later). Additionally, ACP gel could be served to detect temperature changes with a wide operating range and a high sensitivity of 33 %·°C-1, which is promising to monitor the changes in temperature. More interestingly, ACP gel can even monitor the cooking process and breathing frequency with fast response, implying applications in food processing, disease diagnosis and medical treatment. This study provides new opportunities for the design and fabrication of carbohydrate-based gels with multiple performance and multifunctional electronic devices.


Assuntos
Adesivos , Amido , Humanos , Cimentos de Resina , Temperatura , Hidrogéis/química
18.
Angew Chem Int Ed Engl ; 62(10): e202215406, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593654

RESUMO

Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO2 ER) to produce multicarbon (C2+ ) feedstocks (e.g., C2 H4 ). However, the high energy barriers for CO2 activation on the Cu surface is a challenge for a high catalytic efficiency and product selectivity. Herein, we developed an in situ *CO generation and spillover strategy by engineering single Ni atoms on a pyridinic N-enriched carbon support with a sodalite (SOD) topology (Ni-SOD/NC) that acted as a donor to feed adjacent Cu nanoparticles (NPs) with *CO intermediate. As a result, a high C2 H4 selectivity of 62.5 % and an industrial-level current density of 160 mA cm-2 at a low potential of -0.72 V were achieved. Our studies revealed that the isolated NiN3 active sites with adjacent pyridinic N species facilitated the *CO desorption and the massive *CO intermediate released from Ni-SOD/NC then overflowed to Cu NPs surface to enrich the *CO coverage for improving the selectivity of CO2 ER to C2 H4 .

19.
Adv Mater ; 35(1): e2208661, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314400

RESUMO

Nitrogen-coordinated single-cobalt-atom electrocatalysts, particularly ones derived from high-temperature pyrolysis of cobalt-based zeolitic imidazolate frameworks (ZIFs), have emerged as a new frontier in the design of oxygen reduction cathodes in polymer electrolyte fuel cells (PEFCs) due to their enhanced durability and smaller Fenton effects related to the degradation of membranes and ionomers compared with emphasized iron-based electrocatalysts. However, pyrolysis techniques lead to obscure active-site configurations, undesirably defined porosity and morphology, and fewer exposed active sites. Herein, a highly stable cross-linked nanofiber electrode is directly prepared by electrospinning using a liquid processability cobalt-based covalent organic polymer (Co-COP) obtained via pyrolysis-free strategy. The resultant fibers can be facilely organized into a free-standing large-area film with a uniform hierarchical porous texture and a full dispersion of atomic Co active sites on the catalyst surface. Focused ion beam-field emission scanning electron microscopy and computational fluid dynamics experiments confirm that the relative diffusion coefficient is enhanced by 3.5 times, which can provide an efficient route both for reactants to enter the active sites, and drain away the produced water efficiently. Resultingly, the peak power density of the integrated Co-COP nanofiber electrode is remarkably enhanced by 1.72 times along with significantly higher durability compared with conventional spraying methods. Notably, this nanofabrication technique also maintains excellent scalability and uniformity.

20.
Angew Chem Int Ed Engl ; 62(8): e202216490, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36478521

RESUMO

Qiao and co-workers recently designed and interpreted the construction of high-density Pt single atoms in the Co3 O4 host with inter-site interactions via the Hard-Soft Acid-Base principle and further revealed the dynamic structure evolution process of the single atom sites by a series of in situ/ex situ spectroscopic techniques and theoretical computation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...